In order to achieve more accurate predictions of unsteady flow in a transonic compressor rotor an existing numerical approach has been modified by incorporating a turbulence model. The computations are performed by solving the complete time-dependent compressible Navier-Stokes equations using MacCormack’s explicit finite difference algorithm. These equations are solved for the flow through two adjacent rotor blades at a stream surface near the blade tip subjected to the wakes emitted from upstream stators. At this radial location the flow enters the blade passage at an absolute Mach number of 0.66. The high blade curvature at this radial location produces a large region of separated flow on the suction surface with laminar flow. To more accurately resolve the features of this flow separation the Baldwin-Lomax algebraic eddy-viscosity turbulence model is incorporated into the numerical procedure in regions, near the blade surface. The unsteady flow features are represented at the inflow boundary through the use of characteristic variables involving the upstream and downstream running Riemann invariants and the entropy variation expressed in terms of the total pressure profile. At the outflow boundary the concept of a “second throat” or choke point is implemented in conjunction with supersonic outflow conditions. The results are compared with numerical results obtained without the use of a turbulence model (laminar) for a single blade passage. Improved agreement with limited experimental data is also noted.
Skip Nav Destination
ASME 1986 International Gas Turbine Conference and Exhibit
June 8–12, 1986
Dusseldorf, West Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-7928-3
PROCEEDINGS PAPER
Navier-Stokes Solutions of Unsteady Flow in a Compressor Rotor
James N. Scott,
James N. Scott
University of Dayton, Dayton, OH
Search for other works by this author on:
Wilbur L. Hankey, Jr.
Wilbur L. Hankey, Jr.
Wright State University, Dayton, OH
Search for other works by this author on:
James N. Scott
University of Dayton, Dayton, OH
Wilbur L. Hankey, Jr.
Wright State University, Dayton, OH
Paper No:
86-GT-226, V001T01A096; 13 pages
Published Online:
April 1, 2015
Citation
Scott, JN, & Hankey, WL, Jr. "Navier-Stokes Solutions of Unsteady Flow in a Compressor Rotor." Proceedings of the ASME 1986 International Gas Turbine Conference and Exhibit. Volume 1: Turbomachinery. Dusseldorf, West Germany. June 8–12, 1986. V001T01A096. ASME. https://doi.org/10.1115/86-GT-226
Download citation file:
1,068
Views
Related Proceedings Papers
Related Articles
Navier–Stokes Solutions of Unsteady Flow in a Compressor Rotor
J. Turbomach (October,1986)
Aerodynamic Blade Row Interactions in an Axial Compressor—Part I: Unsteady Boundary Layer Development
J. Turbomach (January,2004)
Three-Component LDV Measurements in the Wake of a Compressor Cascade With Flow Separation
J. Turbomach (January,2008)
Related Chapters
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Introduction
Design and Analysis of Centrifugal Compressors
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential