One common method of reducing the NOx emissions from industrial gas turbines is to inject water into the combustion process. The amount of water injected depends on the emissions rules that apply to a particular unit. Westinghouse W501B industrial gas turbines have been operated at water injection levels required to meet EPA NOx emissions regulations. They also have been operated at higher injection levels required to meet stricter California regulations. Operation at the lower rates of water did not affect combustor inspection and/or repair intervals. Operation on liquid fuels with high rates of water also did not result in premature distress. However, operation on gas fuel at high rates of water did cause premature distress in the combustors. To evaluate this phenomenon, a comprehensive test program was conducted; it demonstrated that the distress is the result of the temperature patterns in the combustor caused by the high rates of water. The test also indicated that there is no significant change in dynamic response levels in the combustor. This paper presents the test results, and the design features selected to substantially improve combustor wall temperature when operating on gas fuels, with the high rates of water injection required to meet California applications. Mechanical design features that improve combustor resistance to water injection-induced thermal gradients also are presented.

This content is only available via PDF.