Fluid inertia forces are comparable to viscous forces in squeeze film dampers in the range of many practical applications. This statement appears to contradict the commonly held view in hydrodynamic lubrication that inertia effects are small. Upon closer inspection, the latter is true for predominantly sliding (rather than squeezing) flow bearings.

The basic equations of hydrodynamic lubrication flow are developed, including the inertia terms. The appropriate orders of magnitude of the viscous and inertia terms are evaluated and compared, for journal bearings and for squeeze film dampers. Exact equations for various limiting cases are presented: low eccentricity, high and low Reynolds number. The asymptotic behavior is surprisingly similar in all cases. Due to inertia, the damper force may shift 90° forward from its purely viscous location. Inertia forces are evaluated for typical damper conditions.

The effect of turbulence in squeeze film dampers is also discussed. On physical grounds it is argued that the transition occurs at much higher Reynolds numbers than the usual lubrication turbulence models predict.

This content is only available via PDF.