This paper examines the possibility of injecting methanol into the compressor of a gas turbine, then dissociating it to carbon monoxide and hydrogen so as to cool the air and reduce the work of compression, while simultaneously increasing the fuel’s heating value. A theoretical analysis shows that there is a net reduction in compressor work resulting from this dissociative intercooling effect. Furthermore, by means of a computer cycle model, the effects of dissociation on efficiency and work per unit mass of airflow are predicted for both regenerated and unregenerated gas turbines. The effect on optimum pressure ratio is examined and practical difficulties likely to be encountered with such a system are discussed.

This content is only available via PDF.