In order to gain an understanding of the conditions inside air-cooled gas-turbine rotors, flow visualization, laser-doppler anemometry and heat-transfer measurements have been made in a rotating cavity with either an axial throughflow or a radial outflow of coolant. For the axial throughflow tests, a correlation has been obtained for the mean Nusselt number in terms of the cavity gap ratio, the axial Reynolds number and rotational Grashof number. For the radial outflow tests, velocity measurements are in good agreement with solutions of the linear (laminar and turbulent) Ekman layer equations, and flow visualization has revealed the destabilizing effect of buoyancy forces on the flow structure. The mean Nusselt numbers have been correlated, for the radial outflow case, over a wide range of gap ratios, coolant flow rates, rotational Reynolds numbers and Grashof numbers. As well as the three (forced convection) regimes established from previous experiments, a fourth (free convection) regime has been identified.

This content is only available via PDF.