This paper describes a systematical computational procedure to find configuration changes necessary to modify the resulting flow past turbomachinery cascades, channels and nozzles, to be shock-free at prescribed transonic operating conditions. The method is based on a finite area transonic analysis technique and the fictitious gas approach. This design scheme has two major areas of application. First, it can be used for design of supercritical cascades, with applications mainly in compressor blade design. Second, it provides subsonic inlet shapes including sonic surfaces with suitable initial data for the design of supersonic (accelerated) exits, like nozzles and turbine cascade shapes. This fast, accurate and economical method with a proven potential for applications to three-dimensional flows is illustrated by some design examples.

This content is only available via PDF.