Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70-deg brake angle, air swirler. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swiler markedly reduced the spray mean drop size. Test conditions included a water flow rate of 68.0 liter per hour and airflow rates (per unit area) of 3.7 to 25.7 g per square cm per sec, at 293 K and inlet-air static pressures of 1.01 × 105 to 1.98 × 105 N/m2.

This content is only available via PDF.