The combination of pressurized fluidized bed (PFB) technology and the gas turbine - steam turbine combined-cycle power system offer a unique opportunity for the production of electric power at increased plant efficiency from the direct combustion of high sulfur coal and that is environmentally acceptable without stack gas cleanup. The concept offers the prospect of earlier commercialization than those systems requiring gasification or liquefication of coal to clean fels. This paper presents the design of a 500-MW commercial powerplant prepared in conjunction with the U.S. Department of Energy sponsored program for the design, construction, and operation of a coal-fired PFB/turbine electric pilot plant. The powerplant approach develops over 60 percent of the plant capacity by multiple gas turbine gas turbine-generators and the balance of the capacity by a steam turbine-generator. The paper describes the fluid bed process selection of an air heater cycle. With two-thirds of the compressor discharge air indirectly heated within an in-bed gas-to-air heat exchanger and one-third of the compressor air involved in the combustion process, technology requirements for hot gas cleanup and turbine protection are minimized. This approach, which offers a coal-pile-to-busbar plant efficiency of over 40 percent is superior to other concepts and contemporary plants in terms of plant arrangement flexibility, part-load performance, power availability, and provides a low risk in development toward commercialization in the 1980’s.

This content is only available via PDF.