A novel analysis of the hub and shroud wall boundary layer growth through the diffusing system of a centrifugal compressor is proposed to model the physical processes. It is shown that the diffuser throat blockage and total pressure loss characteristics can be accurately predicted for a 6:1 PR stage. The static pressure effectiveness and stalling limit are successfully predicted qualitatively, but are underestimated and overestimated by 14 and 12 percent respectively. It is argued that diffuser performance is largely controlled by the combined effect of the boundary layer conditions on the hub and shroud walls at impeller exit and the diffusion required to the diffuser throat. For this reason, it is contended that, for best performance at high pressure ratio (≃ 12:1), impeller exit Mach number must be minimized by employing zero to negative prewhirl at impeller entry which in turn maximizes impeller entry shroud relative Mach number. Performance maps are presented for a single-stage centrifugal compressor based on this premise with specific speed = 90. At 15, 12 and 101 PR, 72, 75 and 76.8 percent efficiency, respectively, were attached at 2.6 lb/sec.

This content is only available via PDF.