This paper presents the results of a comprehensive effort to characterize the properties of Inconel 718 produced by a form of laser powder bed fusion (LPBF) additive manufacturing (AM) or 3D-printing, subsequently subjected to hot isostatic pressing (HIP) and heat treatment according to standards F3055-14a and AMS 5663, respectively. Material property data, while broadly available for traditional Inconel 718 presentations (e.g. forgings or castings), is currently lacking for the 3D-printed material.

It is expected that while limited in size, the experimental data sets presented provide sufficient information to glean the capability of LPBF Inconel 718. These include: 1) Chemical composition, electron backscatter diffraction (EBSD), and x-ray energy dispersive spectroscopy (XEDS) characterization of 3D-printed material structure; 2) Tensile properties — 0.2% yield stress, ultimate stress, modulus of elasticity, and elongation to failure — based on 108 samples, as functions of temperature and sample print orientation; 3) Creep rupture data including the Larson-Miller parameter, based on 21 samples; and 4) High cycle fatigue data based on 21 samples as a function of temperature.

Results are compared to available standards and/or data for forged, cast, and other AM Inconel 718. A key observation of this study, based on the EBSD results, is that while the material appears to approach full recrystallization following heat treatment, there is a detectable fraction of the material that does not fully recrystallize, resulting in a material with mechanical properties (e.g. yield stress, creep rupture) measurably lower than those of forgings, but higher than those of castings.

This content is only available via PDF.
You do not currently have access to this content.