Abstract

The present paper numerically studies the impact of three gaseous fuels on the reaction characteristics and pollutant formation in a lean combustion system. The models include an equilibrium calculation with Ansys-Chemkin-Pro, as well as a 3D half-width CFD model using Large Eddy Simulation (LES) and Adaptive Mesh Refinement (AMR) models. The outcomes are targeted to benefit the transition to carbon-free operation of aviation turbines. Three fuels, methane (CH4), hydrogen (H2), and ammonia (NH3) as well as blends thereof were compared at constant equivalence ratios to obtain a firing temperature level of T = 1800°C. The kinetic mechanism in use was suggested and validated by Okafor et al., including 42 species to describe CH4/H2/NH3-air combustion and NOx chemistry. The formation of nitrogen oxide pollutants (NO, NO2 and N2O) were analyzed to determine the sensitivity to the three fuels and their blends. Secondly, a fuel injector scaling study was performed, and a significantly larger jet diameter was selected to compensate for the increased stoichiometric mixture fraction and reduced blend density relative to CH4-fueled architecture. Lastly, the three-dimensional AMR-LES model provided validation of the injector re-sizing, as well as further insight into the expected fuel-air distribution by convective mixing. While the substitution of methane-fueled gas turbines with carbon-free alternatives is generally feasible, blending of H2 and NH3 fuels could be a promising strategy to utilize existing turbine combustors, while retaining reaction timescales close to those of CH4-powered systems.

This content is only available via PDF.
You do not currently have access to this content.