Gas turbines and aircraft engines are dominated by cyclic operating modes with fatigue-related loads. This may result in the acceleration of damage development on the components. Critical components of turbine blades and discs are exposed to cyclic thermal and mechanical multi-axial fatigue. In the current work, planar-biaxial Low-Cycle-Fatigue (LCF) tests are conducted using cruciform specimens at different test temperatures. The influence on the deformation and lifetime behaviour of the nickel-base disk alloy Inconel 718 is investigated at selected cyclic proportional loading cases, namely shear and equi-biaxial. The calculation of the stress and strain distribution of the cruciform specimens from the experimental data is difficult to obtain due to complex geometry and temperature gradients. Therefore, there is a need for Finite Element (FE) Simulations. A viscoplastic material model is considered to simulate the material behaviour subjected to uniaxial and the selected planar-biaxial loading conditions. At first, uniaxial simulation results are compared with the uniaxial experiment results for both batches of IN718. Then, the same material parameters are used for simulating the biaxial loading cases. The prediction of FE simulation results is in good agreement with the experimental LCF test for both shear and equi-biaxial loadings. The equivalent stress amplitude results of the biaxial simulation are compared with the uniaxial results. Furthermore, the lifetime is calculated based on the stabilized cycle from the simulation and by using Crossland and Sines multi-axial stress-based approaches. The Crossland model predicts fatigue life significantly better than the Sines model. Finally, the simulated lifetime results are compared with the experimental lifetime.

This content is only available via PDF.
You do not currently have access to this content.