This study takes inspiration from a previous work focused on the simulations of the Willem-Alexander Centrale (WAC) power plant located in Buggenum (the Netherlands), based on integrated gasification combined cycle (IGCC) technology, under both design and off-design conditions. These latter included co-gasification of coal and biomass, in proportions of 30:70, in three different fuel mixtures. Any drop in the energy content of the coal/biomass blend, with respect to 100% coal, translated into a reduction in gas turbine (GT) firing temperature and load, according to the guidelines of WAC testing. Since the model was found to be accurate in comparison with operational data, here attention is drawn to the GT behavior. Hence part load strategies, such as fuel-only turbine inlet temperature (TIT) control and inlet guide vane (IGV) control, were investigated with the aim of maximizing the net electric efficiency (ηel) of the whole plant. This was done for different GT models from leading manufactures on a comparable size, in the range between 190–200 MW. The influence of fuel quality on overall ηel was discussed for three binary blends, over a wide range of lower heating value (LHV), while ensuring a concentration of H2 in the syngas below the limit of 30 vol%. IGV control was found to deliver the highest IGCC ηel combined with the lowest CO2 emission intensity, when compared not only to TIT control but also to turbine exhaust temperature control, which matches the spec for the selected GT engine. Thermoflex® was used to compute mass and energy balances in a steady environment thus neglecting dynamic aspects.

This content is only available via PDF.
You do not currently have access to this content.