Turbine Vane Frames (TVF) are a way to realize more compact jet engine designs. Located between the high pressure turbine (HPT) and the low pressure turbine (LPT), they fulfill structural and aerodynamic tasks. When used as an integrated concept with splitters located between the structural load-bearing vanes, the TVF configuration contains more than one type of airfoil with sometimes pronouncedly different properties. This system of multidisciplinary demands and mixed blading poses an interesting opportunity for optimization. Within the scope of the present work, a full geometric parameterization of a TVF with splitters is presented. The parameterization is chosen as to minimize the number of parameters required to automatically and flexibly represent all blade types involved in a TVF row in all three dimensions. Typical blade design parameters are linked to the fourth order Bézier-curve controlled camber line-thickness parameterization. Based on conventional design rules, a procedure is presented, which sets the parameters within their permissible ranges according to the imposed constraints, using a proprietary developed code. The presented workflow relies on subsequent three dimensional geometry generation by transfer of the proposed parameter set to a commercially available CAD package. The interdependencies of parameters are discussed and their respective significance for the adjustment process is detailed. Furthermore, the capability of the chosen parameterization and adjustment process to rebuild an exemplary reference TVF geometry is demonstrated. The results are verified by comparing not only geometrical profile data, but also validated CFD simulation results between the rebuilt and original geometries. Measures taken to ensure the robustness of the method are highlighted and evaluated by exploring extremes in the permissible design space. Finally, the embedding of the proposed method within the framework of an automated, gradient free numerical optimization is discussed. Herein, implications of the proposed method on response surface modeling in combination with the optimization method are highlighted. The method promises to be an option for improvement of optimization efficiency in gradient free optimization of interdependent blade geometries, by a-priori excluding unsuitable blade combinations, yet keeping restrictions to the design space as limited as possible.

This content is only available via PDF.
You do not currently have access to this content.