The Morton Effect (ME) is a synchronous vibration problem in turbomachinery caused by the non-uniform viscous heating around the journal circumference, and its resultant thermal bow and ensuing synchronous vibration. This paper treats the unconventional application of the SFD for the mitigation of ME-induced vibration. Installing a properly designed squeeze film damper (SFD) may change the rotor’s critical speed location, damping and deflection shape, and thereby suppress the vibration caused by the ME. The effectiveness of the SFD on suppressing the ME is tested via linear and nonlinear simulation studies employing a 3D thermo-hydrodynamic (THD) tilting pad journal bearing, and a flexible, Euler beam rotor model. The example rotor model is for a compressor that experimentally exhibited an unacceptable vibration level along with significant journal differential heating near 8,000 rpm. The SFD model includes fluid inertia and is installed on the non-drive end bearing location where the asymmetric viscous heating of the journal is highest. The influence of SFD cage stiffness is evaluated.

This content is only available via PDF.
You do not currently have access to this content.