Hybrid energy plants, which include both fossil fuel technologies and renewable energy systems, can provide an important step towards a sustainable energy supply. In fact, the hybridization of renewable energy systems with gas turbines which are fed by fossil fuels allows an acceptable compromise, so that high fossil fuel efficiency and high share of renewables can be potentially achieved. Moreover, electrical and thermal energy storage systems increase the flexibility of the energy plant and effectively manage the variability of energy production and demand.

This paper investigates the optimal sizing of a hybrid energy plant which combines an industrial gas turbine, renewable energy systems and energy storage technologies. The considered renewable energy system is a photovoltaic system, while the energy storage technologies are electrical energy storage and thermal energy storage. Moreover, a compression chiller and a gas boiler are also considered. For this purpose, the load profiles of electricity, heating and cooling during a whole year are taken into account for the case study of the Campus of the University of Parma (Italy). The sizing optimization problem of the different technologies composing the hybrid energy plant is solved by using a genetic algorithm, with the goal of minimizing primary energy consumption. Moreover, different operation strategies are analyzed and compared so that plant operation is also optimized.

The results demonstrate that the optimal sizing of the hybrid energy plant, coupled with the optimized operation strategy, allows high average cogeneration efficiency (up to 84%), thus minimizing primary energy consumption.

This content is only available via PDF.
You do not currently have access to this content.