Abstract

The effects of sinusoidal oscillations in the main flow on film cooling in the gas turbine were investigated by Large Eddy Simulation (LES). The film cooling flow fields for the sinusoidal oscillation of 32 Hz in the mainstream from a cylindrical hole inclined by 35° to a flat plate at average blowing ratio of M = 0.5 were numerically simulated. The LES results were compared to the experimental data from Seo, Lee and Ligrani (1998), Jung, Lee and Ligrani (2001) and Reynolds-Averaged Navier-Stokes (RANS) results. The experimental results showed that if the oscillation frequency in the main flow was increased, the adiabatic film cooling effectiveness was decreased. The credibility of the LES results relative to the experimental data was demonstrated by the comparison of time-averaged adiabatic film cooling effectiveness, time and phase-averaged temperature contours, contours of Q-criterion, time-averaged velocity profiles, and time and phase-averaged Urms profiles with the RANS results. The adiabatic film cooling effectiveness by LES model showed a good match to the experimental data, while RANS results highly over-predict the centerline effectiveness. Also, the LES results showed more consistent with the experimental data for the time-averaged and phase-averaged temperature contours, time-averaged velocity profiles and time and phase-averaged Urms profiles than the RANS results. RANS did not predict the peak generated by the jet penetration exactly and Urms profiles obtained by RANS approach was much smaller compared to the experimental results. Paper will discuss these results in detail.

This content is only available via PDF.
You do not currently have access to this content.