Abstract

In the present study an existing test rig at the Institute of Thermal Turbomachinery (ITS), Karlsruhe Institute of Technology (KIT) designed for generic film cooling studies is adopted to accommodate time resolved stereoscopic particle image velocimetry measurements. Through a similarity analysis the test rig geometry is scaled by a factor of about 20. Operating conditions of hot gas and cooling air inlet and exit can be imposed that are compliant with realistic engine conditions including density ratio. The cooling air is supplied by a parallel-to-hot gas coolant flow-configuration with a coolant Reynolds number of 30,000. Time-resolved and time-averaged stereo particle image velocimetry data for a film cooling flow at high density ratio and a range of blowing ratios is presented in this study. The investigated film cooling hole constitutes a 10°-10°-10° laidback fan-shaped hole with a wide spacing of P/D = 8 to insure the absence of jet interaction. The inclination angle amounts to 35°. The time-resolved data indicates transient behaviour of the film cooling jet.

This content is only available via PDF.
You do not currently have access to this content.