In this study, a model flame of quasi-1D counterflow spray flame has been developed. The two-dimensional multiphase convection-diffusion-reaction (CDR) equations have been simplified to one dimension using similarity reduction under the Eulerian framework. This model flame is able to directly account for non-adiabatic heat loss as well as multiple combustion regimes present in realistic spray combustion processes. A spray flamelet library was generated based on the model flame. To retrieve data from the spray flamelet library, the enthalpy was used as an additional controlling variable to represent the interphase heat transfer, while the mixing and chemical reaction processes were mapped to the mixture fraction and the progress variable. The spray-flamelet/progress-variable (SFPV) approach was validated against the results from the direct integration of finite-rate chemistry as a benchmark. The SFPV approach gave a better performance in terms of temperature predictions, while the conventional gas-phase flamelet/progress-variable (FPV) approach over-predicted by nearly 20%. In terms of species mass fractions, there was no significant difference between the two, both showing good agreements with the direct integration of chemistry (DIC) model.

This content is only available via PDF.
You do not currently have access to this content.