Abstract

The hydrodynamics and heat transfer of a binary mixture of sand and biomass in a fluidized bed have been numerically investigated. The Eulerian multi-fluid model MFM incorporating kinetic theory of granular flow was used to numerically investigate fluidized bed. A commercial code has been used together with user-defined functions to correctly predict the hydrodynamics and the heat transfer. Numerical results were validated against the experiment in terms of pressure drop across the bed and concentration of biomass at different heights of the bed. Influence of additional parameters, such as superficial gas velocity and sand sizes on hydrodynamics were investigated. Additionally, heat transfer in the fluidized bed was also studied highlighting the influence of the temperature dependent properties of air on the results. The present results reveal that better mixing is achieved for smallest sand size, also promoting more uniform temperature of biomass.

This content is only available via PDF.
You do not currently have access to this content.