Abstract

Foam metal is a foam-like substance made out of metal and can be used in flow control, vibration damping and acoustic absorption mainly based on their special physical properties. A kind of foam metal casing treatment is proposed and tested in this study. The impact of the foam metal casing treatment on compressor stability and noise reduction are experimentally investigated. The foam metal selected in the experiments is constructed from ferronickel and its PPI (pores per inch) is 35. The foam metal casing treatment comprises annular support casing and foam metal ring. The effect of foam metal location on stability of the test compressor are investigated by placing shims in support casing. Both time-mean and high-response instrumentation are applied to capture the steady and unsteady compressor performances with the presence of the foam metal casing treatment. 20 microphones of G.R.A.S type are used to measure in-duct acoustic level of the compressor. It is found that the SMI (stall margin improvement) is 36.1% and the efficiency loss is 1.5% at location 7. When foam metal moves to rotor leading edge, the SMI as well as the efficiency loss are getting smaller. The optimal location in the experiments is location 4 where the SMI of compressor is 14.9% and the efficiency loss is 0.1%. The interaction of foam metal with flow in the blade tip region at these locations are investigated and presented in detail. The PSD (power spectrum density) analysis is carried out to show the unsteady signal development in stall inception. The noise attenuation varies in 0.18∼1.6 dB when foam metal is at different locations. Finally, the mechanism and application of the foam metal casing treatment are also discussed.

This content is only available via PDF.
You do not currently have access to this content.