The Gas Turbine (GT) Axial Compressor (AXCO) can absorb up to the 30% of the power produced by the GT, being the component with the largest impact over the performances. The axial compressor blades might undergo the fouling phenomena as a consequence of the unwanted material locally accumulating during the machine operations. The presence of such polluting substances reduces the aerodynamic efficiency as well as the air intake causing the drop of performances and the increase of the fuel consumption. To address the above-mentioned critical issues, several washing strategies have been implemented so far, among the most promising ones, High Flow On-Line Water Washing (HFOLWW) is worth to mention. Exploiting this technique, the performance levels are preserved, whereas the stops for maintenance should be reduced. Nevertheless, this comes at the cost of a long-term erosion exposure caused by the impact of water washing droplets. Hence, it was deemed necessary to carry out a finite element method (FEM) structural analysis of the first rotor stage of the compressor of an aeroderivative GT, integrated into the HFOLWW scheme, in order to evaluate the fatigue strength of the component subjected to the erosion; possibly along with its acceptability limits. The first step requires the determination of the blade areas affected by erosion, using computational fluid dynamics (CFD) simulations, followed by the creation and the 3D modelling of the damaged geometry. The final step consists in the evaluation of the static stress and the dynamic agents, to perform a fatigue analysis through the Goodman relation and carrying out a simulation of damage propagation exploiting the theory of fracture mechanics. This procedure has been extended to the damage-free baseline component to set-up a model suitable for comparison. The structural analysis confirms the design of the blade, moreover dynamic and static evaluation of the eroded profiles haven’t outlined any working, nor mechanical, issue. This entitles the structural choice of HFOLWW as a system which guarantees full performance levels of the compressor.

This content is only available via PDF.
You do not currently have access to this content.