Abstract

The one-dimensional meanline method is of great importance for the design and performance prediction of multistage axial compressors. The models adopted in it, such as incidence, deviation and loss, considering real-fluid effects, determine whether the compressors’ operating behavior can be simulated accurately or not.

This paper describes an improved meanline stage-stacking approach for the modelling of modern transonic axial multistage compressors. The improvement embodied in this study is mainly focused on deviation and surge margin prediction, which is the result of a combination of the previous models and models’ correction. One of the coefficients in the deviation angle model is corrected. A new surge model, different from the well-known maximum static pressure rise method of Koch and Smith, is introduced into this program and its advantage lies in higher accuracy and direct calculation instead of proposing a judgment criterion. Three well-documented NASA axial transonic compressors are calculated by this meanline method, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the method presented in this paper. A discussion of the result then follows.

This content is only available via PDF.
You do not currently have access to this content.