Abstract

The vibration absorber or tuned mass damper is a well-known mechanism, where a small mass connected to a larger structure is used to redirect vibration energy and provide reduction in vibration amplitudes at desired locations and frequencies. While tuned vibration absorbers have been widely applied for damping of mechanical systems, the concept remains largely unexplored in the design of dampers for bladed disks. This paper investigates whether such a vibration absorption mechanism is feasible for such nominally cyclic symmetric structures which are characterized by double modes, high modal density, and sensitivity to uncertainties such as mistuning. The single-degree of freedom vibration absorber concept is extended for application to this complex modal space, and lumped mass models are used for analysis. Trends in effectiveness of a vibration absorption based damper are explored by studying sensitivities to various parameters such as stiffness and damping at various locations. Effects of mistuning across sectors and locations of damper attachment are also considered. The results of the study establish the feasibility of the vibration absorption mechanism for application in blisks, and encourage further exploration of the concept, possibly in conjunction with other well-established damping mechanisms such as friction.

This content is only available via PDF.
You do not currently have access to this content.