Abstract

This paper will show the influence of ambient pressure on the thrust capacity of bump-foil and spiral-groove gas thrust bearings. The bearings were operating in nitrogen at various pressures up to 69 bar, and were tested to failure. Failure was detected at various pressures by incrementally increasing the thrust load applied to the thrust bearing until the bearing was no longer thermally stable, or until contact was observed by a temperature spike measured by thermocouples within the bearing.

These tests were performed on a novel thrust bearing test rig that was developed to allow thrust testing at pressures up to 207 bar cavity pressure at 260°C while rotating at speeds up to 120,000 rpm. The test rig floats on hydrostatic air bearings to allow for the direct measurement of applied thrust load through linkages that connect the stationary thrust loader to the rotor housing. Test results on a 65 mm (2.56 in) bump-foil thrust bearing at 100 krpm show a marked increase in load capacity with gas density, which has not previously been shown experimentally. Results also show that the load capacity of a similarly sized spiral-groove thrust bearing are relatively insensitive to pressure, and supported an order-of-magnitude less load than that observed for the bump-foil thrust bearing. These results are compared with analytical predictions, which agree reasonably with the experimental results. Predicted power loss is also presented for the bump-foil bearing; however, measured power loss was substantially higher.

This content is only available via PDF.
You do not currently have access to this content.