Abstract

This work aims to provide a technique with which high frequency heat flux measurement data can be acquired in systems with high operational temperatures and high-speed flows with quantifiable and accurate uncertainty estimates. This manuscript presents the detailed calibration and application of an atomic layer thermopile, for heat fluxes with a frequency bandwidth of 0 to 1MHz. Two calibration procedures with a detailed uncertainty analysis. The first procedure consists using a laser to deliver radiation heat flux, while the second consists of a convective heat blowdown experiment. The use of this probe is demonstrated in a high-speed environment at Mach 2. The sensor effectively captures the passage of the normal shock wave and the values are compared with those computed using surface temperature measurement. Finally, a numerical study is carried out to design a cooling system that will allow the sensor to survive in high temperature conditions of 1273K while the sensor film is maintained at 323K. A two-dimensional axisymmetric conjugate heat transfer analysis is carried out to obtain the desired geometry.

This content is only available via PDF.
You do not currently have access to this content.