Abstract

Inlet an outlet boundary conditions are essential elements of any CFD predictions and this is even more so for turbomachinery Large Eddy Simulations, either applied to academic or industrial configurations. For compressible solvers, non-reflecting, characteristic inlet boundary condition imposing total pressure, total temperature and flow direction is usually needed, while an outlet relaxation methodology that automatically adapts the outlet static pressure as a function of the desired mass-flow rate rate is used for turbomachinery flow predictions. Establishing such a framework is clearly desirable especially for industrial use of LES. Development and validations remain necessary in such a fully unsteady context as detailled hereafter.

This content is only available via PDF.
You do not currently have access to this content.