Abstract

Previous investigations performed at the von Karman Institute for Fluid Dynamics (VKI) have shown an influence of the gas-to-wall temperature ratio on the bypass transition development along the VKI LS89 blade suction side. In the present work, the influence of this quantity on the flow field downstream of this highly-loaded nozzle guide vane is studied through the evaluation of the aerodynamic losses. The investigation is organized in three sections with different combinations of exit Mach numbers and freestream turbulence intensity (FSTI) while Tgas/Twall is varied between 1.1 and 1.3 for all the tests. The Isentropic Compression Tube facility (CT-2) at VKI allowed the determination of the total pressure loss across the cascade by means of a Pitot tube in the upstream region and a downstream three-hole needle probe. The latter is traversed in the pitch-wise direction by a pneumatic traversing system. Finally, the cascade aerodynamic efficiency is quantified by means of the kinetic energy loss coefficient ζ and the total pressure drop profile distortions in the wake region.

This content is only available via PDF.
You do not currently have access to this content.