Abstract

A comprehensive comparison between Implicit Large Eddy Simulations (ILES) and experimental results of a modern highlift low-pressure turbine airfoil has been carried out for an array of Reynolds numbers (Re). Experimental data were obtained in a low-speed linear cascade at the Polithecnic University of Madrid using hot-wire anemometry and LDV. The numerical code is fourth order accurate, both in time and space. The spatial discretization of the compressible Navier-Stokes equations is based on a high-order Flux Reconstruction approach while a fourth order Runge-Kutta method is used to march in time the simulations. The losses, pressure coefficient distributions, and boundary layer and wake velocity profiles have been compared for an array of realistic Reynolds numbers. Moreover, boundary layer and wake velocity fluctuations are compared for the first time with experimental results. It is concluded that the accuracy of the numerical results is comparable to that of the experiments, especially for integral quantities such as the losses or exit angle. Turbulent fluctuations in the suction side boundary layer and the wakes are well predicted also. The elapsed time of the is about 140 hours on 40 Graphics Processor Units. The numerical tool is integrated within an industrial design system and reuses pre- and post-processing tools previously developed for another kind of applications. The trend of the losses with the Reynolds number has a sub-critical regime, where the losses scale with Re−1, and a supercrital regime, where the losses scale with Re−1/2. This trend can be seen both, in the simulations and the experiments.

This content is only available via PDF.
You do not currently have access to this content.