The inhomogeneity of temperature in a turbine is related to the nonuniform heat release and air injections in combustors. In addition, it is influenced by the interactions between turbine cascades and coolant injections. Temperature inhomogeneity results in nonuniform flow temperature at turbine outlets, which is commonly measured by multiple thermal couples arranged in the azimuthal direction to monitor the operation of a gas turbine engine. Therefore, the investigation of temperature inhomogeneity transportation in a multistage gas turbine should help in detecting and quantifying the over-temperature or flameout of combustors using turbine exhaust temperature. Here the transportation of temperature inhomogeneity inside the four-stage turbine of a 300-MW gas turbine engine was numerically investigated using 3D CFD. The computational domain included all four stages of the turbine, consisting of more than 500 blades and vanes. Realistic components (N2, O2, CO2, and H2O) with variable heat capacities were considered for hot gas and cooling air. Coolants were added to the computational domain through more than 19,000 mass and momentum source terms. his was simple compared to realistic cooling structures. A URANS CFD run with over-temperature/flameout at 6 selected combustors out of 24 was carried out. The temperature distributions at rotor–stator interfaces and the turbine outlet were quantified and characterized by Fourier transformations in the time domain and space domain. It is found that the transport process from the hot-streaks/cold-streaks at the inlet to the outlet is relatively stable. The cold and hot fluid is redistributed in time and space due to the stator and rotor blades, in the region with a large parameter gradient at the inlet, strong unsteady temperature field and composition field appear. The distribution of the exhaust gas composition has a stronger correlation with the inlet temperature distribution and is less susceptible to interference.

This content is only available via PDF.
You do not currently have access to this content.