The unsteady flow prediction for turbomachinery applications relies heavily on unsteady RANS (URANS). For flows that exhibit vortex shedding, such as the wall-jet/wake flows considered in this study, URANS is unable to predict the correct momentum mixing with sufficient accuracy. We suggest a novel framework to improve that prediction, whereby the deterministic scales associated with vortex shedding are resolved while the stochastic scales of pure turbulence are modelled. The framework first separates the stochastic from the deterministic length scales and then develops a bespoke turbulence closure for the stochastic scales using a data-driven machine-learning algorithm. The novelty of the method lies in the use of machine-learning to develop closures tailored to URANS calculations. For the walljet/wake flow, three different mass flow ratios (0.86, 1.07 and 1.26) have been considered and a high-fidelity dataset of the idealised geometry is utilised for the sake of model development. This study serves as an a priori analysis, where the closures obtained from the machine-learning algorithm are evaluated before their implementation in URANS. The analysis looks at the impact of using all length scales versus the stochastic scales for closure development, and the impact of the extent of the spatial domain for developing the closure. It is found that a two-layer approach, using bespoke trained models for the near wall and the jet/wake regions, produce the best results. Finally, the generalisability of the developed closures is also evaluated by applying a given closure developed using a particular mass flow ratio to the other cases.

This content is only available via PDF.
You do not currently have access to this content.