The blades of rear stages in small size core compressors are reduced to shorter than 20 mm or even less due to overall high pressure ratio. The growing of tip clearance-to-blade height ratio of the rear stages enhance the leakage flow and increase the possibility of a strong clearance sensitivity, thus limiting the compressor efficiency and stability. A new concept of compressor, namely diffuser passage compressor (DP), for small size core compressors was introduced. The design aims at making the compressors robust to tip clearance leakage flow by reducing pressure difference between pressure and suction surfaces. To validate the concept, the second stage of a two-stage highly loaded axial compressor was designed with DP rotor according to a diffuser map. The diffuser passage stage has the same inlet condition and loading as the conventional compressor (CNV) stage, of which the work coefficient is around 0.37. The predicted performance and flow field of the DP were compared with the conventional axial compressor in detail. The rig testing was supplemented with the numerical predictions. Results reveal that the throttle characteristic of DP indicates higher pressure rise and the loss reduction in tip clearance is mainly responsible for the performance improvement. For the compressor with DP, the pressure and flow angle are more uniform on exit plane. What’s more, the rotor with diffused passage reveals more robust than the conventional rotor at double clearance gap. Furthermore, the experimental data indicate that DP presents higher pressure rise at design and part speeds. At design speed, the stall margin was extended by 7.25%. Moreover, peak adiabatic efficiency of DP is also higher than that of CNV by about 0.7%.

This content is only available via PDF.
You do not currently have access to this content.