Abstract

Performance and flow measurements are carried out to investigate the impact of varying the geometry of axial casing grooves on the stall margin and efficiency of an axial turbomachine. Prior studies have shown that skewed semi-circular grooves installed near the blade leading edge (LE) have multiple effects on the flow structure, including ingestion of the tip leakage vortex (TLV), suppression of backflow vortices, and periodic variations of flow angle. To determine which of these phenomena is a key contributor, the present study examines the impact of several grooves, all with the same inlet geometry, but with outlets aimed at different directions. The “U” grooves that have circumferential exits aimed against the direction of blade rotation achieve the highest stall margin improvement of well above 60% but cause a 2.0% efficiency loss near the best efficiency point (BEP). The “S” grooves, which have exits aimed with the blade rotation, achieve a relatively moderate stall margin improvement of 36%, but they do not reduce the BEP efficiency. Other grooves, which are aligned with and against the flow direction at the exit from upstream inlet guide vanes, achieve lower improvements. These trends suggest that causing high periodic variations in flow angle around the blade leading edge is particularly effective in extending the stall margin, but also reduces the peak efficiency. In contrast, maintaining low flow angles near the LE achieves more moderate improvement in stall margin, without the maximum efficiency loss. Hence, of the geometries tested, the S grooves appear to have the best overall impact on the machine performance. Velocity measurements and flow visualizations are performed in an axial plane located downstream of the grooves, near the trailing edge of the rotor. Reduced efficiency or performance co-occurs with elevated circumferential velocity in the tip region, but differences in the axial blockage are subtle. Yet, near the BEP, the regions with reduced axial velocity, or even negative velocity between the TLV and the endwall, are wider behind the U grooves compared to the S grooves. The vorticity profiles also show that at low flow rates the TLV is ingested entirely by the grooves, in contrast to the best efficiency point, where a considerable fraction of the TLV rollup occurs downstream of the grooves.

This content is only available via PDF.
You do not currently have access to this content.