Abstract
When the concept of aircraft derivative marine gas turbines were originally proposed, one of the selling points was the engine was going to be easy to remove and replace thereby minimizing the operational impact on the ship. Anticipated Mean Time Between Removal (MTBR) of these engines was expected to be approximately 3000 hours, due mostly to turbine corrosion damage. This drove the design and construction of elaborate removal routes into the engine intakes; the expected time to remove and replace the engine was expected to be less than five days. However, when the first USN gas turbine destroyers started operating, it was discovered that turbine corrosion damage was not the problem that drove engine maintenance. The issues that drove engine maintenance were the accessories, the compressor, combustors and engine vibration. Turbine corrosion was discovered to be a longer term affect. This was primarily due to the turbine blade and vane coatings used and intake air filtration. This paper discusses how engine design, tooling development, maintenance procedure development and engine design improvements all contributed to extending the MTBR of USN propulsion and electrical power generation gas turbines on the DD 963, CG 47, DDG 51 and FFG 7 classes to greater than 20,000 hours. The ability to remove the gas turbine rapidly or in most cases repair the engine in-place has given the USN great maintenance flexibility, been very cost effective and not impacted operational readiness.