Three-dimensional, three-component time-averaged velocity fields have been measured within a low-speed centrifugal fan with forward curved blades. The model investigated is representative of fans commonly used in automotive HVAC applications. The flow was analyzed at two Reynolds numbers for the same ratio of blade rotational speed to outlet flow velocity. The flow patterns inside the volute were found to have weak sensitivity to Reynolds number. A pair of counter-rotating vortices evolve circumferentially within the volute with positive and negative helicity in the upper and lower regions, respectively. Measurements have been further extended to capture phase-resolved flow features by synchronizing the data acquisition with the blade passing frequency. The mean flow field through each blade passage is presented including the jet-wake structure extending from the blade and the separation zone on the suction side of the blade leading edge.

This content is only available via PDF.
You do not currently have access to this content.