Recent studies showed that a prompt detection of the stall inception, connected with a specific model to predict its associated aerodynamic force, could provide room for an extension of the left margin of the operating curve of high-pressure centrifugal compressors.

In industrial machines working in the field, however, robust procedures to detect and identify the phenomenon are still missing, i.e. the operating curve is almost ever cut preliminary by the manufacturer by a proper safety margin; moreover, no agreement is found in the literature about a well-defined threshold to define the onset of the stall. In particular, in some cases the intensity of the arising subsynchronous frequency is compared to the revolution frequency, while in many other ones it is compared to the blade passage frequency. A large experience in experimental stall analyses collected by the authors revealed that in some cases unexpected spikes could make this direct comparison not reliable for a robust automatic detection.

To this end, a new criterion was developed based on an integral analysis of the area subtended to the entire subsynchronous spectrum of the dynamic pressure signal of probes positioned just outside the impeller exit. A dimensionless parameter was then defined to account for the spectrum area increase in proximity to stall inception. This new parameter enabled the definition of a reference threshold to highlight the arising of stall conditions, whose validity and increased robustness was here verified based on a set of experimental analyses of different types of full-stage test cases of industrial centrifugal compressors at the test rig.

This content is only available via PDF.
You do not currently have access to this content.