In the latest several years, concentrated solar plants (CSP) have been rapidly developed. Steam turbines employed in these plants are subjected to daily start up and continuous load variations. There is a general increase in demand for operation flexibility and rapid start up capability for solar steam turbines. Accordingly, how to decrease the low cyclic fatigue life consumption during the daily start up process is a hot researched topic at present, and this greatly depends on the transient thermal stress. A number of studies show that the startup schemes and the unit’s structural form decide the LCF life consumption directly.

In this paper, a 50MW double cylinder (HP and ILP Section) reheat solar steam turbine is studied, and it is operated continuously with inlet steam conditions of 540[°C], 140[bar], reheat steam conditions of 540[°C], 24[bar] and exhaust conditions of 41.5[°C], 0.08[bar]. A number of comparisons are made with the FEM numerical simulation, and some optimal designs which are applied to improve the rapid start up performance and decrease the LCF life consumption during the startup are presented.

This content is only available via PDF.
You do not currently have access to this content.