The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible only two blade different geometries have been allowed which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for the purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes.
Skip Nav Destination
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
June 11–15, 2018
Oslo, Norway
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5115-9
PROCEEDINGS PAPER
Forced Response Reduction of a Blisk by Means of Intentional Mistuning
Bernd Beirow,
Bernd Beirow
Brandenburg University of Technology, Cottbus, Germany
Search for other works by this author on:
Arnold Kühhorn,
Arnold Kühhorn
Brandenburg University of Technology, Cottbus, Germany
Search for other works by this author on:
Felix Figaschewsky,
Felix Figaschewsky
Brandenburg University of Technology, Cottbus, Germany
Search for other works by this author on:
Alfons Bornhorn,
Alfons Bornhorn
MAN Diesel & Turbo SE, Augsburg, Germany
Search for other works by this author on:
Oleg V. Repetckii
Oleg V. Repetckii
Irkutsk State Agrarian University, Irkutsk, Russia
Search for other works by this author on:
Bernd Beirow
Brandenburg University of Technology, Cottbus, Germany
Arnold Kühhorn
Brandenburg University of Technology, Cottbus, Germany
Felix Figaschewsky
Brandenburg University of Technology, Cottbus, Germany
Alfons Bornhorn
MAN Diesel & Turbo SE, Augsburg, Germany
Oleg V. Repetckii
Irkutsk State Agrarian University, Irkutsk, Russia
Paper No:
GT2018-76584, V07CT35A031; 10 pages
Published Online:
August 30, 2018
Citation
Beirow, B, Kühhorn, A, Figaschewsky, F, Bornhorn, A, & Repetckii, OV. "Forced Response Reduction of a Blisk by Means of Intentional Mistuning." Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 7C: Structures and Dynamics. Oslo, Norway. June 11–15, 2018. V07CT35A031. ASME. https://doi.org/10.1115/GT2018-76584
Download citation file:
31
Views
Related Proceedings Papers
Related Articles
Forced Response Reduction of a Blisk by Means of Intentional Mistuning
J. Eng. Gas Turbines Power (January,2019)
Reduction of Forced Response Levels for Bladed Disks by Mistuning: Overview of the Phenomenon
J. Eng. Gas Turbines Power (July,2011)
Related Chapters
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2
Getting Ready for Production
Total Quality Development: A Step by Step Guide to World Class Concurrent Engineering
Digital Human in Engineering and Bioengineering Applications
Advances in Computers and Information in Engineering Research, Volume 1