Single crystal blades used in high pressure turbine bladed disks of modern gas-turbine engines exhibit material anisotropy. In this paper the sensitivity analysis is performed to quantify the effects of blade material anisotropy orientation on deformation of a mistuned bladed disk under static centrifugal load. For a realistic, high fidelity model of a bladed disk both: (i) linear, and (ii) non-linear friction contact conditions at blade roots and shrouds are considered. The following two kinds of analysis are performed: (i) local sensitivity analysis, based on first order derivatives of system response w.r.t design parameters, and (ii) statistical analysis using polynomial chaos expansion. The polynomial chaos expansion is used to transfer the uncertainty in random input parameters to uncertainty in static deformation of the bladed disk. An effective strategy, using gradient information, is proposed to address the “curse of dimensionality” problem associated with statistical analysis of realistic bladed disk.

This content is only available via PDF.
You do not currently have access to this content.