Dry-friction whip and whirl occurs when a rotor contacts a stator across a clearance annulus. In a general sense, the relative motion between the two bodies is described by a circular precessing motion. While this problem is generally well understood, the author is unaware of any papers that discuss the problem for systems having asymmetric rotor or stator supports. The current work will investigate a general model to describe dry-friction whip and whirl for the case of continuous contact between a rotor and stator in the presence of asymmetry. This paper will show that for light asymmetry, the rotor and stator motions are elliptical; however, the relative motion between the two bodies remains circular.

This content is only available via PDF.
You do not currently have access to this content.