The paper presents an application of statistical calibration techniques to a bracket design fatigue model simulated in COMSOL Multiphysics®. The calibration will tune the bracket’s material properties and fatigue characteristics. For illustrative purposes, the test data used to calibrate the simulation model will be generated from the same simulation routine with the addition of an intentionally applied bias and random noise to simulate model form and physical testing errors. The accuracy and conclusions from the statistically calibrated model will be compared with the uncalibrated model as well as a model calibrated with conventional error minimization methods. Multiple metrics will be shown which can be used for model validation, including a discrepancy map which characterizes inadequacies in the simulation. The metrics used in the comparison will also include results from optimization, sensitivity analysis, and propagation of uncertainties motivated by manufacturing variations during bracket fabrication. The results will demonstrate the importance of calibrating a model before drawing design conclusions.

This content is only available via PDF.
You do not currently have access to this content.