Turbine inlet conditions in modern aero-engines employing lean-burn combustors are characterised by highly swirled flow and non-uniform temperature distributions. As a consequence of the lack of confidence in numerical predictions and the uncertainty of measurement campaigns, the use of wide safety margins is of common practice in the design of turbine cooling systems, thus affecting the engine performance and efficiency.

Previous experiences showed how only scale-resolving approaches such as Large-eddy and Scale-adapting simulations are capable of overcoming the limitations of RANS, significantly improving the accuracy in the prediction of flow and temperature fields at the combustor outlet. However it is worth investigating the impact of such differences on the aerothermal performance of the NGVs, as to understand the limitations entailed in the current approach for their thermal design. Industrial applications in fact usually rely on 1D, circumferentially-averaged profiles of pressure, velocity and temperature at the combustor-turbine interface in conjunction with Reynolds-averaged Navier-Stokes (RANS) models.

This paper describes the investigation performed on an experimental test case consisting of a combustor simulator equipped with NGVs. Three numerical modelling strategies were compared in terms of flow field and thermal loads on the film-cooled vanes: i) RANS model of the NGVs with inlet conditions obtained from a RANS simulation of the combustor; ii) RANS model of the NGVs with inlet conditions obtained from a Scale-Adaptive Simulation (SAS) of the combustor; iii) SAS model inclusive of both combustor and NGVs.

The results of this study show that estimating the aerodynamics at the NGV exit does not demand particularly complex approaches, whereas the limitations of standard RANS models are highlighted again when the turbulent mixing is key. High-fidelity predictions of the conditions at the turbine entrance proved to be very beneficial to reduce discrepancies in the estimation of local adiabatic wall temperature of even 100 K. However, a further leap forward can be achieved with an integrated simulation, capable of reproducing the transport of the unsteady fluctuations generated in the combustor up into the turbine, which plays a key role in presence of film cooling. This work therefore points out how keeping the analysis of combustor and NGVs separate can lead to a significantly misleading estimation of the thermal loads and ultimately to a wrong thermal design of the cooling system.

This content is only available via PDF.
You do not currently have access to this content.