This paper describes the numerical investigations on the aerodynamic and thermal performance of a rotor blade cascade with multiple film cooling rows in the passage. First, the experimental data on an annular cascade with upstream film cooling was compared with the numerical results to validate the numerical method. The CFD simulations of the models with a row of film holes at four different locations on the hub endwall were performed respectively. The aerodynamic and thermal performance under the interaction of the secondary flow and endwall film cooling are analyzed based on the CFD predicted streamlines of mainstream flow and film injection, the contours of total pressure loss on the sections located in the passage and at the blade exit, the pitch-averaged film cooling effectiveness and film cooling effectiveness contours. The results show that film holes placed at low level of iso-Mach line tends to provide a better cooling with a smaller amount of coolant.

This content is only available via PDF.
You do not currently have access to this content.