This paper presents a novel sequential combustor experiment for the study of reheat flame responses to high-frequency, transversal thermoacoustic oscillations. The reheat combustion chamber is of flat, quasi two-dimensional design to distinctly separate combustion areas dominated by auto-ignition and aerodynamic flame stabilization. This specific combustor setup furthermore promotes the occurrence of pressure pulsations at the first transverse resonance frequency, often referred to as screech. For investigation of combustion and acoustic properties, the reheat stage is equipped with pulsation probes at the face plate, and the entire combustion zone is optically accessible from all lateral sides to allow for (laser-) optical flame and flow diagnostics. In order to validate the qualification of the experimental setup for investigations of high-frequency flame dynamics, the reheat combustion regime and resulting transverse pressure dynamics are investigated. The desired flame shape with distinct auto-ignition and aerodynamic flame stabilization zones is achieved and can be sensibly controlled. Analyzing the frequency spectrum of the dynamic pressure measurements at the combustor face plate reveals the first transverse resonance at approximately 1600 Hz, which satisfies a key goal of the specific design. Overall, the setup qualifies for studying flame-acoustics interaction in reheat combustors and provides an experimental benchmark for modeling efforts and their validation. This will eventually contribute to design countermeasures to thermoacoustic pulsations for improved future generations of gas turbine combustors.

This content is only available via PDF.
You do not currently have access to this content.