The resonant coupling between flames and acoustics is a growing issue for gas turbine manufacturers. They can be reduced by adding acoustic dampers on the combustion chamber walls. Nonetheless, if the engine is operated out of the stable window, the damper may be exposed to high-amplitude acoustic levels, which may trigger unwanted nonlinear effects. This work aims at providing an overview of the dynamics associated with those limit cycles using a simple analytical model, where a perfectly tuned damper is coupled to the combustion chamber. The damper, crossed by a purge flow in order to prevent hot gas ingestion, is modeled as a non-linearly damped harmonic oscillator, with vortex shedding as the main dissipation mechanism. The combustion chamber featuring a linearly unstable thermoacoustic mode is modelled as a Van der Pol oscillator. The fixed points of the coupled system and their stability can be determined by analyzing the averaged amplitude equations. This allows the computation of a fixed point topology map as function of the growth rate of the unstable mode and the mean velocity through the damper neck. Simulink simulations are also performed and compared to the analytical predictions. Finally, experiments are performed on a simple rectangular cavity, where the thermoacoustic instability resulting from the interaction between heat release and acoustic pressure is mimicked by an electro-acoustic instability. A feedback loop is built, where the signal from a microphone is filtered, delayed, and amplified before being sent to a loudspeaker placed inside the rectangular cavity. The delay and gain of the feedback loop can be modified to change the growth rate of the instability. One Helmholtz damper can be added to the cavity and tuned to the unstable mode of interest. The growth rate reduction capabilities of the damper and the amplitude of the limit cycle in the unstable cases are in good agreement with the analytical and numerical predictions, underlining the potentially dangerous behavior of the limit cycles which should be taken into account for real engine cases.
Skip Nav Destination
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
June 11–15, 2018
Oslo, Norway
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5106-7
PROCEEDINGS PAPER
Stability and Limit Cycles of a Nonlinear Damper Acting on a Linearly Unstable Thermoacoustic Mode
Claire Bourquard,
Claire Bourquard
ETH Zürich, Zürich, Switzerland
Search for other works by this author on:
Nicolas Noiray
Nicolas Noiray
ETH Zürich, Zürich, Switzerland
Search for other works by this author on:
Claire Bourquard
ETH Zürich, Zürich, Switzerland
Nicolas Noiray
ETH Zürich, Zürich, Switzerland
Paper No:
GT2018-76838, V04BT04A036; 10 pages
Published Online:
August 30, 2018
Citation
Bourquard, C, & Noiray, N. "Stability and Limit Cycles of a Nonlinear Damper Acting on a Linearly Unstable Thermoacoustic Mode." Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels, and Emissions. Oslo, Norway. June 11–15, 2018. V04BT04A036. ASME. https://doi.org/10.1115/GT2018-76838
Download citation file:
29
Views
Related Proceedings Papers
Related Articles
Active Noise Control Using Phase-Compensated, Damped Resonant Filters
J. Vib. Acoust (April,2006)
Passive Control of Limit Cycle Oscillations in a Thermoacoustic System Using Asymmetry
J. Appl. Mech (January,2008)
Amplitude-Dependent Damping and Driving Rates of High-Frequency Thermoacoustic Oscillations in a Lab-Scale Lean-Premixed Gas Turbine Combustor
J. Eng. Gas Turbines Power (December,2021)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Comparison of RAODV and AODV Networking Routing Protocols Based on Number of Hops in Path
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)