Lean premixed combustion is extensively used in gas turbine industry to reduce pollutant emissions. However, combustion stability still remains as a primary challenge associated with high hydrogen content fuels. Flashback is a crucial concern for designing gas turbine combustors in terms of operability limits. The current experimental study addresses the boundary layer flashback of hydrogen-air premixed jet flames at gas turbine premixer conditions (i.e. elevated pressure and temperature). Flashback propensity of a commercially available injector, originally designed for natural gas, is studied at different operating conditions and corresponding measurements are presented. The pressure dependence of flashback propensity is consistent with previous studies. The previously developed flashback model is successfully applied to the current data, verifying its utilization for various test conditions/setups. In addition, the model is used to predict flashback propensity of the injector at the actual engine preheat temperature. The injector is then modified to increase boundary layer flashback resistance and the corresponding data are collected at the same operating conditions. To avoid the boundary layer flashback, the mixture is leaned out in the near-wall region, where the flame can potentially propagate upstream. The comparison of gathered data shows a clear improvement in flashback resistance. This improvement is further elaborated by numerically studying fuel/air mixing characteristics for the two injectors.

This content is only available via PDF.
You do not currently have access to this content.