A preliminary design optimization approach of axial flow compressors is developed. Loss correlations associated with airfoil geometry are introduced to relax the stringent requirement for the designer to prescribe the stage efficiency. In face of the preliminary design complexity resulted from the large number of design variables together with their stringent variation ranges and multiple design goals, the multi-objective optimization algorithm is incorporated. With such a developed preliminary design optimization method, the design space can be then explored extensively and the optimum designs of both high level overall efficiency and wide stall margin can be readily achieved. The preliminary design optimization method is validated in two steps. Firstly, an existing 5-stage compressor is redesigned without optimization. The obtained geometries and flow parameters are compared to the existing data and a good consistency is achieved. Then, the redesigned compressor is used as initial design and optimized by the developed multi-objective preliminary design optimization method, and significant performance gains are obtained, which demonstrates the effectiveness of the developed optimization methods.

This content is only available via PDF.
You do not currently have access to this content.