In an attempt to validate a Large Eddy Simulation (LES) approach, computations of a transonic centrifugal compressor with a backswept, unshrouded impeller followed by radial and axial vaned diffusers are performed. A sector composed of one main blade and one splitter blade, two radial diffuser vanes and six axial diffuser vanes is simulated including all the technological effects of the experimental rig. The LES methodology to simulate the rotor/stator configuration is introduced. Emphasis is put on the best trade-off between accuracy of the simulation and affordable CPU cost. A law-of-the-wall boundary condition is used to reduce the mesh size, with a target of y+ around a hundred for all walls except in the tip leakage with y+ around five. Computation of one entire characteristic line is obtained continuously in time: the transient from the flow at rest to the converged points at blockage, peak efficiency, near surge and path to deep surge is computed increasing progressively the outlet pressure as in the experiments. First, LES results are compared to experiments and show excellent agreement both in terms of overall performance and time-averaged internal flow fields previously obtained by Laser Doppler Anemometry. Then, a focus is proposed on the complementary information LES provide in the rotor. The key findings are that contrary to previous URANS studies in this centrifugal compressor, LES capture influential details of the flow structures in the rotor: secondary structures, shock/boundary layer interaction and boundary layer separation at the tip of the impeller. Moreover, it is clearly shown that the tip leakage vortex increases in size and intensity from peak efficiency to surge and becomes much more erratic. Emphasis is put on the causes and consequences of the tip leakage spillage in the neighbouring rotor channels. Pressure fluctuations were also found to increase from peak efficiency to surge downstream the splitter blade leading edge. The whole results finally show that LES with a law-of-the-wall provides excellent results in such a complex case.

This content is only available via PDF.
You do not currently have access to this content.