In variable nozzle geometry turbines (VNT), the vanes that form the nozzle are opened to control turbine mass flow and expansion ratio (ER) in order to allow better engine matching and the generation of more turbine power. In application to turbocharged road vehicles, the vanes are closed to provide higher boost pressure for engine and vehicle acceleration, and may also be used for engine braking assistance. In both situations, high nozzle expansion ratios (ERs) are created, and shockwaves may be produced from the nozzles. These shocks reduce turbine efficiency and can cause high cycle fatigue (HCF) damage to the downstream rotor blades. Design of high ER radial nozzles is difficult for VNT because transonic flows are very sensitive to small changes to vane geometry, and there is a large semi-vaneless space after the nozzle throat. Shock minimised nozzle designs are therefore often accomplished by an auto-optimisation technique. While design targets may be achieved, this technique does not offer sufficient insight into how and why an optimal flow field has been derived, so the same optimisation procedure must be applied to every new design. In this paper, a new design method that overcomes this problem is proposed. The method first uses a conformal mapping to transfer a radial nozzle from the r-0 plane into the x-y plane. The mapped nozzle displays amplification of supersonic acceleration that is explained by the curvature changes brought about by the mapping. In addition, a link between shock strength and the flatness of the suction surface of the mapped nozzle was found. These features can be utilised to design nozzles with reduced shock loss. Nozzles for 6:1 ER were designed in this way and CFD results show significantly weaker nozzle shockwaves. Other performances of the nozzles are either improved or unaffected.
Skip Nav Destination
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
June 11–15, 2018
Oslo, Norway
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5100-5
PROCEEDINGS PAPER
Variable Geometry Turbine Nozzle Design for High Expansion Ratios
Hua Chen
Dalian Maritime University, Dalian, China
Lei Huang
National Laboratory of Engine Turbocharging Technology, Tianjin, China
Paper No:
GT2018-75013, V02BT44A001; 12 pages
Published Online:
August 30, 2018
Citation
Chen, H, & Huang, L. "Variable Geometry Turbine Nozzle Design for High Expansion Ratios." Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery. Oslo, Norway. June 11–15, 2018. V02BT44A001. ASME. https://doi.org/10.1115/GT2018-75013
Download citation file:
118
Views
Related Proceedings Papers
Related Articles
A Study of Advanced High-Loaded Transonic Turbine Airfoils
J. Turbomach (October,2006)
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
J. Turbomach (October,2011)
Investigation of the Flow Field on a Transonic Turbine Nozzle Guide Vane With Rim Seal Cavity Flow Ejection
J. Fluids Eng (November,2010)
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential