Boosters are commonly used in liquid propellant rocket engines (LPRE) to allow lower propellant pressures in their storage tanks and, thus, smaller structural masses, contributing to cavitation free operation in the subsequent main turbopumps (TP). Boosters can be identified as key components for the overall performance of large engines, and if their operating requirements are stringent, they can operate under cavitation. Thus, effective design and performance tools are fundamental to design the components of these boosters considering this phenomenon. The simulation techniques based on turbulent and multiphase 3-D Computational Fluid Dynamics (CFD) were used in this work at steady state regime. The simulations were done using the commercial software CFX from ANSYS® Workbench. The study was conducted analyzing the performance of the first stage of the hydraulic axial turbine of the liquid oxygen (LOX) booster of the Space Shuttle Main Engine (SSME), at various operation points under cavitation, considering 3.0% tip clearance relative to blade height. The results obtained for, the performance parameters of this stage were compared with those obtained through monophase simulation, and the multiphase technique showed results closer to the experimental ones around the design point (DP), with increased simulation times acceptable for the computational resources currently available. Moreover, the results from the current work show the importance of considering the effects of cavitation through multiphase flow in hydraulic turbines.
Skip Nav Destination
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
June 11–15, 2018
Oslo, Norway
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5100-5
PROCEEDINGS PAPER
Turbopump Booster Turbine Performance: Comparison Between Monophase and Multiphase Flows Using CFD
Luiz Henrique Lindquist Whitacker,
Luiz Henrique Lindquist Whitacker
Aeronautics Institute of Technology - ITA, São José dos Campos, Brazil
Search for other works by this author on:
Jesuino Takachi Tomita,
Jesuino Takachi Tomita
Aeronautics Institute of Technology - ITA, São José dos Campos, Brazil
Search for other works by this author on:
Cleverson Bringhenti
Cleverson Bringhenti
Aeronautics Institute of Technology - ITA, São José dos Campos, Brazil
Search for other works by this author on:
Luiz Henrique Lindquist Whitacker
Aeronautics Institute of Technology - ITA, São José dos Campos, Brazil
Jesuino Takachi Tomita
Aeronautics Institute of Technology - ITA, São José dos Campos, Brazil
Cleverson Bringhenti
Aeronautics Institute of Technology - ITA, São José dos Campos, Brazil
Paper No:
GT2018-76879, V02BT41A029; 9 pages
Published Online:
August 30, 2018
Citation
Lindquist Whitacker, LH, Tomita, JT, & Bringhenti, C. "Turbopump Booster Turbine Performance: Comparison Between Monophase and Multiphase Flows Using CFD." Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery. Oslo, Norway. June 11–15, 2018. V02BT41A029. ASME. https://doi.org/10.1115/GT2018-76879
Download citation file:
36
Views
Related Proceedings Papers
Related Articles
Thermodynamic Effect on a Cavitating Inducer in Liquid Hydrogen
J. Fluids Eng (November,2010)
Numerical Techniques Applied to Hydraulic Turbines: A Perspective Review
Appl. Mech. Rev (January,2016)
CFD-Based Design Optimization for Hydro Turbines
J. Fluids Eng (February,2007)
Related Chapters
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
The Influence of Liquid Rocket Engine Inducer Compliance and Mass Flow Gain Factor on Cavitation Surge Frequencies
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3